Vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads
نویسندگان
چکیده مقاله:
In the present work, study of the vibration of a functionally graded (FG) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. Free vibration analysis is presented for FG cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. The equations of motion are derived by Hamilton’s principle. Material properties assume to be graded in the thickness direction according to a simple power law distribution in terms of the volume fraction of the constituents. Effects of boundary conditions and volume fractions (power law exponent) on the natural frequencies of the FG cylindrical shell are studied. Frequency characteristics of the FG shell are found to be similar to those of isotropic cylindrical shells. Furthermore, natural frequencies of these shells are observed to be dependent on the constituent volume fractions and boundary conditions. Strain displacement relations from Love's and first-order shear deformation theories are employed. Galerkin method is used to derive the governing equations for clamped boundary conditions. Further, analytical results are validated with those reported in the literature and excellent agreement is observed. Finally, in order to investigate the effects of the temperature gradient, functionally graded materials cylindrical shell with high temperature specified on the inner surface and outer surface at ambient temperature,1D heat conduction equation along the thickness of the shell is applied and the results are reported.
منابع مشابه
vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads
in the present work, study of the vibration of a functionally graded (fg) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. free vibration analysis is presented for fg cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. the equations of motion are derived by hamilton...
متن کاملVibration analysis of FGM cylindrical shells under various boundary conditions
In this paper, a unified analytical approach is proposed to investigate vibrational behavior of functionally graded shells. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stokes transformation. Material properties are assumed to be graded in...
متن کاملVibration Analysis of Functionally Graded Spinning Cylindrical Shells Using Higher Order Shear Deformation Theory
In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...
متن کاملComparison of Two Kinds of Functionally Graded Cylindrical Shells with Various Volume Fraction Laws for Vibration Analysis
In this paper, a study on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are taken into account by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface and Type II...
متن کاملNonlinear Vibration of Functionally Graded Cylindrical Shells under Radial Harmonic Load
In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells subjected to radial harmonic excitation is investigated. The nonlinear formulation is based on a Donnell’s nonlinear shallow-shell theory, in which the geometric nonlinearity takes the form of von Karman strains. The Lagrange equations of motion were obtained by an energy approach. In order to reduce the syst...
متن کاملA review of functionally graded thick cylindrical and conical shells
Thick shells have attracted much attention in recent years as intelligent and functional graded materials because of their unique properties. In this review paper, some critical issues and problems in the development of thick shells made from Functionally graded piezoelectric material (FGPM) are discussed. This review has been conducted on various types of methods which are available for thick ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 103- 114
تاریخ انتشار 2017-03-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023